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Abstract. We briefly review the calculational procedure for the PQCD prediction for hard exclusive quan-
tities and reconsider the problem of the factorization scale dependence.

1 Introduction

The application of perturbative QCD (PQCD) to exclu-
sive processes at large momentum transfer is based on the
factorization theorems [1–4]. The main idea is the sep-
aration of short- from long-distance effects in the sense
that the high-energy region, being highly off-shell, is fac-
torized from the low-energy region, which is characteristic
of the bound-state formation. The factorization may be
carried out order by order in perturbation theory. The in-
formation concerning the long-distance dynamics is accu-
mulated in the distribution amplitude (DA), one for each
hadron involved, whereas the short-distance dynamics is
represented by the hard-scattering amplitude. The sepa-
ration of the short- from the long-distance part occurs at
the factorization scale which is usually chosen by conve-
nience. Furthermore, PQCD calculation to the finite order
necessarily requires the renormalization of the UV diver-
gences and introduces therefore a renormalization scale
dependence in the final result.

As is well known, one of the most critical problems
in making reliable PQCD predictions for exclusive pro-
cesses at large momentum transfer is how to deal with the
dependence of the corresponding truncated perturbation
series on the choice of the scheme for the QCD running
coupling constant αS(µ2

R) and on the choice of the renor-
malization scale µR, as well as, the factorization scale µF.
Although the physical quantities depend neither on the
renormalization nor on the factorization scale, the PQCD
prediction at finite order bears the residual dependence on
the renormalization and factorization scales, the choice of
which introduces theoretical uncertainties in the predic-
tion.

A lot of work has been devoted to the analysis of the
renormalization scale and scheme dependence [5–8]. The
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problem of finding the optimal renormalization scale in a
given scheme has been widely discussed in the literature
and, apart from the pragmatical choice of taking µ2

R to
equal the characteristic scale of the process, three quite
different approaches have been proposed: the principle of
fastest apparent convergence (FAC) [5], the principle of
minimal sensitivity (PMS) [6] and the Brodsky–Lepage–
Mackenzie (BLM) scale setting [7]. A physically motivated
formalism in which any two perturbatively calculable ob-
servables can be related to each other without any renor-
malization scale or scheme ambiguity has been developed
[8].

In contrast to the renormalization scale, somewhat less
attention has been paid to the role played by the factor-
ization scale. Although one can encounter in the literature
several extensions of the treatments of the renormaliza-
tion scale to the treatments of the factorization scale [9],
when examining the hard exclusive processes the conve-
nient choice of µ2

F equal to the characteristic scale of the
process, i.e., the large momentum transfer denoted by, say,
Q2, is mainly used, with the justification that for such a
choice the ln(Q2/µ2

F) logarithms, giving rise to the growth
of the coefficients in the expansion of the hard-scattering
amplitude when Q2 � µ2

F, vanish. Obviously, the result
will differ for some other choice of µ2

F. Then one can try,
similarly to the renormalization scale problem, to justify
other choices for the factorization scale by examining the
underlying dynamics of the process [10,11].

In this paper we review the prescription and the ingre-
dients of the higher-order calculation of the hard exclu-
sive quantities (obtained in the so called standard hard-
scattering approach [1–4]) and we reexamine their factor-
ization scale dependence.

We show that the residual factorization scale depen-
dence in the finite order of PQCD calculation reflects the
failure of the proper resummation of all ln(µ2

F) logarithms.
Thus, taking into account the factorization scale depen-
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dence of the hard-scattering amplitude and of the distribu-
tion amplitude by consistently including all terms that are
effectively of the same order in αS, the PQCD prediction
for an exclusive one-scale process is free of any residual
dependence on the factorization scale at every order of
the PQCD calculation. The unavoidable theoretical un-
certainty of a particular order of the PQCD calculation
remains only due to the renormalization procedure. Nev-
ertheless, we comment on the problems one is left with
when adopting such a procedure, especially in the case of
multi-scale processes.

In Sect. 2 we introduce the ingredients of the standard
hard-scattering picture on the example of the pion tran-
sition form factor, while in Sect. 3 the higher-order calcu-
lational procedure is outlined. The discussion of the fac-
torization scale dependence is given in Sect. 4. Section 5 is
devoted to concluding remarks.

2 Standard hard-scattering picture
at higher-orders

For definiteness, notational simplicity, and clarity of pre-
sentation, we consider the high-energy behavior of the sim-
plest exclusive quantity, the pion transition form factor
Fγπ(Q2), defined in terms of the γ∗(q, µ)+γ(k, ν) → π(P )
amplitude. For large momentum transfer Q2(= −q2), the
general factorization formula [1–4] for Fγπ(Q2) reads

Fγπ(Q2) = Φ∗(x, µ2
F) ⊗ TH(x, Q2, µ2

F) . (1)

Here, Φ(x, µ2
F) is the pion distribution amplitude;

TH(x, Q2, µ2
F) is the hard-scattering amplitude; µ2

F is the
factorization scale, and x denotes the pion constituent’s
momentum fraction, while ⊗ ≡ ∫ 1

0 dx.
The hard-scattering amplitude (HSA) TH can be ex-

plicitly calculated in perturbation theory and represented
as a series in the QCD running coupling constant αS(µ2

R)
by

TH(x, Q2, µ2
F) = T

(0)
H (x, Q2) +

αS(µ2
R)

4π
T

(1)
H (x, Q2, µ2

F)

+
α2

S(µ2
R)

(4π)2
T

(2)
H (x, Q2, µ2

F, µ2
R) + · · · , (2)

where µ2
R is the renormalization scale. The dependence of

the coefficients of the expansion (2) on the scales µ2
R and

µ2
F is of the form lnn(µ2

R/Q2) and lnm(µ2
F/Q2), respec-

tively.
The pion distribution amplitude Φ(x, µ2

F), although in-
trinsically non-perturbative, satisfies the Brodsky–Lepage
(BL) evolution equation

µ2
F

∂

∂µ2
F

Φ(x, µ2
F) = V (x, u, µ2

F) ⊗ Φ(u, µ2
F) , (3)

where V (x, u, µ2
F) is the perturbatively calculable evolu-

tion kernel

V (x, u, µ2
F) =

αS(µ2
F)

4π
V1(x, u) +

α2
S(µ2

F)
(4π)2

V2(x, u) + · · · (4)

The solution of (3) can be represented as

Φ(x, µ2
F) = ΦLO(x, µ2

F)+
αS(µ2

F)
4π

ΦNLO(x, µ2
F)+ · · · , (5)

where ΦLO and ΦNLO denote the leading order (LO) and
next-to-leading order (NLO) parts, respectively. When
convoluting the finite-order results (2) and (5) according
to (1), one is usually left with the residual dependence on
both µ2

R and µ2
F. The origin of the latter will be explained

in the following.

3 Calculational procedure

In order to be able to examine the origin of the residual de-
pendence on µ2

F, we first reexamine the calculational pro-
cedure and the ingredients of the standard hard-scattering
picture for Fγπ(Q2).

The HSA TH is obtained by evaluating the γ∗+γ → qq
amplitude, which we denote by T . Owing to the fact that
final-state quarks are taken to be massless and on-shell,
the amplitude contains collinear singularities. Since TH is
a finite quantity by definition, collinear singularities have
to be subtracted. Therefore, T factorizes as

T (u, Q2) = TH(x, Q2, µ2
F) ⊗ ZT ,col(x, u; µ2

F) , (6)

with collinear singularities being subtracted at the scale
µ2

F and absorbed into the constant ZT ,col. The UV sin-
gularities are removed by the renormalization of the
fields and by the coupling-constant renormalization at the
(renormalization) scale µ2

R.
The process-independent pion DA in a frame where

P+ = P 0 + P 3 = 1, P− = P 0 − P 3 = 0, and P⊥ = 0 is
defined [4,12,13] as

Φ(u) =
∫

dz−

2π
ei(u−(1−u))z−/2

×
〈

0
∣∣∣∣Ψ̄(−z)

γ+γ5

2
√

2
Ω Ψ(z)

∣∣∣∣ π

〉
(z+=z⊥=0)

, (7)

where Ω = exp
{

ig
∫ 1

−1 dsA+(zs)z−/2
}

is a path-ordered
factor making Φ gauge invariant. Owing to the light-cone
singularity at z2 = 0 [4,13] the matrix element in (7)
is UV divergent. After regularization and renormalization
at the scale µ̃2

R, z2 is effectively smeared over a region
of order z2 = −z2

⊥ ∼ 1/µ̃2
R. As a result, a finite quantity,

namely, the pion DA Φ(v, µ̃2
R), is obtained and corresponds

to the pion wave function integrated over the pion intrinsic
transverse momentum up to the scale µ̃2

R.
The pion DA as given in (7), with |π〉 being the physi-

cal pion state, cannot be determined by perturbation the-
ory. If the meson state |π〉 is replaced by a |qq; t〉 state
composed of a free (collinear, massless, and on-shell) quark
and antiquark (carrying momenta tP and (1 − t)P and
pseudoscalar meson quantum numbers), then the ampli-
tude (7) becomes
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φ̃(u, t) =
∫

dz−

2π
ei(u−(1−u))z−/2

×
〈

0
∣∣∣∣Ψ(−z)

γ+γ5

2
√

2
Ω Ψ(z)

∣∣∣∣ qq; t
〉

. (8)

Taking (8) into account, we can express (7) as

Φ(u) = φ̃(u, t) ⊗ 〈qq̄; t|π〉 . (9)

The distribution φ̃(u, t) can be treated perturbatively,
which enables us to investigate the high-energy tail of
the pion DA and its evolution. The φ̃(u, t) distribu-
tion is multiplicatively renormalizable owing to the mul-
tiplicative renormalizability of the composite operator
Ψ(−z) γ+γ5 Ω Ψ(z). This means that the UV singularities
that are not removed by the renormalization of the fields
and by the coupling-constant renormalization factorize in
the renormalization constant Zφ,ren at the (renormaliza-
tion) scale µ̃2

R. Apart from UV singularities, the matrix
element in (8) contains also collinear singularities. Sub-
tracting these singularities at the scale µ2

0 and absorbing
them in Zφ,col, we can write (8) as

φ̃(u, t) (10)
= Zφ,ren(u, v; µ̃2

R) ⊗ φV (v, s; µ̃2
R, µ2

0) ⊗ Zφ,col(s, t; µ2
0) .

By combining (9) and (10), we obtain the distribution
Φ(u) in the form

Φ(u) = Zφ,ren(u, v; µ̃2
R) ⊗ Φ(v, µ̃2

R) , (11)

where

Φ(v, µ̃2
R) = φV (v, s; µ̃2

R, µ2
0) ⊗ Φ(s, µ2

0) . (12)

Here,
Φ(s, µ2

0) = Zφ,col(s, t; µ2
0) ⊗ 〈qq̄; t|π〉 (13)

represents the non-perturbative input (containing
collinear singularities and all effects of confinement and
pion bound-state dynamics) determined at the scale µ2

0,
while φV (v, s; µ̃2

R, µ2
0) governs the evolution of Φ(v, µ2

0) to
the scale µ̃2

R. By differentiating (11) with respect to µ̃2
R,

one obtains (3), with the evolution potential V given by

V (µ̃2
R) = −Z−1

φ,ren(µ̃2
R)

(
µ̃2

R
∂

∂µ̃2
R

Zφ,ren(µ̃2
R)

)
. (14)

To simplify the expressions, the convolution (⊗) is here,
and where appropriate, replaced by the matrix multi-
plication in x–y space (the unit matrix is defined as
� = δ(x − y)), while the x, y variables are suppressed.

By convoluting the amplitudes T (u, Q2) and Φ(u), (6)
and (11), respectively, in analogy with [14,4] we obtain
the pion transition form factor Fγπ(Q2):

Fγπ(Q2) = Φ†(u) ⊗ T (u, Q2) . (15)

Now, in order that the factorization holds, µ̃2
R has to co-

incide with µ2
F and by making use of the fact that

ZT ,col(x, u; µ2
F) ⊗ Zφ,ren(u, v; µ2

F) = δ(x − v) , (16)

the divergences of T (u, Q2) and Φ(u) in (15) cancel (this
has been explicitly shown in [15] up to nf -proportional
terms of O(α2

s)) and we are left with the finite perturbative
expression for the pion transition form factor (1).

We note here that the same factorization (and renor-
malization) scheme is employed in the hard-scattering and
DA part, i.e., in (6) and (11), respectively. Furthermore,
as pointed out in [16], the evolution equation as defined
by (3) and (4) corresponds to the simplified scheme fixed
by the preference that the distribution amplitude should
have no dependence on the renormalization scale1.

It is worth pointing out that the scale µ2
F represent-

ing the boundary between the low- and high-energy parts
in (1) plays the role of the separation scale for collinear
singularities in T (u, Q2), on one hand, and of the renor-
malization scale for UV singularities appearing in the per-
turbatively calculable part of the distribution amplitude
Φ(u), on the other hand.

The calculational procedure explained above is illus-
trated in Fig. 1.

T

q

k

Φ

u P

(1-u) P

P

φ π

t P t P

(1-t) P (1-t) P

Fig. 1. Pictorial representation of the calculational ingredients
of the pion transition form factor. T represents the perturba-
tively calculable γ∗ + γ → qq hard-scattering amplitude, while
Φ denotes the (unrenormalized) pion distribution amplitude
given by (7), which can be expressed, as in (9), in terms of
the perturbatively calculable part φ̃ (8) and a perturbatively
incalculable part

1 Note that, in general, such a residual dependence appears
along with the evolution kernel depending on two scales:

V (x, u, µ2
F) =

αs(µ2
R)

4π
V1(x, u)

+
α2

s(µ2
R)

(4π)2

(
V2(x, u) − β0V1(x, u) ln

(
µ2

R

µ2
F

))

+ O
(
α3

s

)
.

Here µ2
R corresponds to the scale of the coupling constant,

while µ̃2
R = µ2

F denotes the scale at which remaining UV diver-
gences, due to the renormalization of the composite operator,
factorize.
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4 Factorization scale dependence

We next turn to the discussion of the µ2
F dependence of

the pion transition form factor defined as in (1).
Concerning the pion distribution amplitude Φ(x, µ2

F),
its dependence on µ2

F is specified by the evolution equa-
tion (3) and, as can be seen from (12), this dependence is
completely contained in the evolutional part φV . By cal-
culating the perturbatively obtainable amplitude φ̃ [15]
directly from (8), the result obtained for φV can be orga-
nized as

φV (µ2
F, µ2

0) = φLO
V (µ2

F, µ2
0) +

αS(µ2
F)

4π
φNLO

V (µ2
F, µ2

0)

+ · · · , (17)

where

φLO
V (µ2

F, µ2
0) = � +

αS(µ2
F)

4π
ln

µ2
F

µ2
0

V1

+
α2

S(µ2
F)

(4π)2
ln2 µ2

F

µ2
0

1
2

(V 2
1 + β0 V1)

+ · · · , (18a)

φNLO
V (µ2

F, µ2
0) =

αS(µ2
F)

4π
ln

µ2
F

µ2
0

V2 + · · · , (18b)

and the functions Vn represent the n-loop evolutional
kernels appearing in (3). The terms explicitly given in (18)
correspond to the results of the two-loop calculation [15].
In writing (18), use has been made of

αS(µ2
F)

4π
ln

µ2
F

µ2
0

≈ 1
β0

(
1 − αS(µ2

F)
αS(µ2

0)

)
= O(α0

S) .

On the other hand, the complete LO and NLO behav-
ior of φV (v, s; µ2

F, µ2
0) and, consequently, of Φ(v, µ2

F) can
be determined by solving the evolution equation (3) or
equivalently

µ2
F

∂

∂µ2
F

φV (v, s, µ2
F, µ2

0) (19)

= V (v, s′, µ2
F) ⊗ φV (s′, s, µ2

F, µ2
0) .

The LO result is of the form

φLO
V (v, s; µ2

F, µ2
0)

=
∞∑

n=0

′ v(1 − v)
Nn

C3/2
n (2v − 1)C3/2

n (2s − 1)

×
(

αS(µ2
F)

αS(µ2
0)

)−γ(0)
n /β0

, (20)

where Nn = (n+1)(n+2)/(4(2n+3)), while C
3/2
n (2x−1)

are the Gegenbauer polynomials (the eigenfunctions of the
LO kernel V1 with the corresponding eigenvalues γ

(0)
n [11]).

The complete LO prediction given above represents the
summation of all (αS lnµ2

F/µ2
0)

n terms from (18a). The
complete formal solution of the NLO evolution equation

was obtained in [17] by using conformal constraints and
the form of φNLO

V (corresponding to the resummation of
(18b)) can be extracted from the results listed in [11].

It is important to realize that the method employed
above to study the µ2

F behavior of φV can be used to
examine the dependence of the hard-scattering amplitude
TH(x, Q2, µ2

F) on the scale µ2
F, as well.

By differentiating (1) with respect to µ2
F and by tak-

ing into account (3), one finds that the hard-scattering
amplitude satisfies the evolution equation

µ2
F

∂

∂µ2
F

TH(x, Q2, µ2
F) = −TH(y, Q2, µ2

F) ⊗ V (y, x; µ2
F) .

(21)
This equation2 is analogous to the DA evolution equa-
tion (3). Similarly to the above discussed solution of the
DA evolution equation, the finite-order solution of (21)
would contain the complete dependence on µ2

F, to given
order in αS, in contrast to the expansion (2) truncated at
the same order and containing unresummed logs. Let us
note that the explicit expressions for the hard-scattering
amplitude TH(x, Q2, µ2

F) in the form (2), evaluated up to
nf -proportional NNLO terms, are given in [15].

The µ2
F dependence of TH(x, Q2, µ2

F) can be, similarly
to (12), factorized in the function φV (y, x, Q2, µ2

F) as fol-
lows:

TH(x, Q2, µ2
F) = TH(y, Q2, µ2

F = Q2) ⊗ φV (y, x, Q2, µ2
F) .

(22)

Using (19) one can show by partial integration that (22)
indeed represents the solution of the evolution equation
(21).

When calculating to finite order in αS, it seems not
quite consistent to adopt the procedure, often encountered
in the literature, in which the Φ(x, µ2

F) distribution ob-
tained by solving the evolution equation (3) is convoluted
with TH(x, Q2, µ2

F) obtained by the truncation of the ex-
pansion (2). In the latter case, only the partial dependence
on µ2

F is included (logs are not resummed), in contrast to
the former case and hence the residual dependence on the
factorization scale µ2

F enters.
The proper procedure would be to convolute Φ (12)

and TH (22) in terms of the same function φV , where φV

can be given by (18) with unresummed logs or can repre-
sent the solution of (19), i.e., the resummed result. In both
cases the µ2

F dependence of Φ and TH completely cancels
out and there is no residual dependence on µ2

F. One usu-
ally uses the resummed form of φV in DA Φ, i.e, Φ is taken
as a solution of the evolution equation, and therefore this
procedure should be applied for TH as well.

Substituting (12) and (22) in (1), we obtain

Fγπ(Q2)

= TH(y, Q2, Q2) ⊗ φV (y, s, Q2, µ2
0) ⊗ Φ∗(s, µ2

0) , (23)

2 Equation (21) can be also obtained by combining (6) with
(14) and (16).
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where

φV (y, x, Q2, µ2
F) ⊗ φV (x, s, µ2

F, µ2
0)

= φV (y, s, Q2, µ2
0) (24)

has been taken into account. It is important to realize
that the expression (24) is valid at every order of a PQCD
calculation3, and hence even the finite-order prediction for
Fγπ(Q2) does not depend on the choice of the µ2

F scale4.
Hence, the expression (24) represents the resumma-

tion of the ln(Q2/µ2
0) logarithms over the intermediate

µ2
F scale, performed in such a way that both the loga-

rithms ln(µ2
F/µ2

0) originating from the perturbative part
of the DA and the ln(Q2/µ2

F) logarithms from the hard-
scattering part are resummed. The effect in the final pre-
diction, at every order, is the same as if we had performed
the complete renormalization-group resummation of the
ln(Q2/µ2

0) logarithms.
Although by using the explicit results for (2) and the

evolution equation solution for φV it is straightforward
to employ (22) and obtain TH with resummed ln(µ2

F/Q2)
logs, it is much easier that the complete resummation is
performed in the distribution amplitude. Hence, by adopt-
ing the common choice µ2

F = Q2, we avoid the need for
the resummation of the ln(Q2/µ2

F) logarithms in the hard-
scattering part, making the calculation simpler and hence,
for practical purposes, the preferable form of Fγπ(Q2) is
given by

Fγπ(Q2) = TH(x, Q2, Q2) ⊗ Φ∗(x, Q2) . (25)

We stress here that in this approach, in which the consis-
tent treatment of Φ and TH dependence on µ2

F is required,
any other choice of µ2

F would lead to the same result; only
the calculation would be more involved.

3 Equation (24) can be easily checked to the NLO order [15]
by using the LO result (20) and the NLO results of [17].

4 Let us, following (4) and (17), define the finite-order quan-
tities

φ
(n)
V (µ2

F, µ2
0)

= φLO
V (µ2

F, µ2
0) + · · · +

αn
S(µ2

F)
(4π)n

φN···NLO
V (µ2

F, µ2
0) ,

and

V (n)(µ2
F) =

αS(µ2
F)

4π
V1 + · · · +

αn+1
S (µ2

F)
(4π)n+1 Vn

(here n = 0, . . .). The functions φ
(n)
V (Q2, µ2

F) and φ
(n)
V (µ2

F, µ2
0)

represent the solutions of the evolutional equations

µ2
F

∂

∂µ2
F

φ
(n)
V (µ2

F, µ2
0) = V (n)(µ2

F) ⊗ φ
(n)
V (µ2

F, µ2
0) ,

µ2
F

∂

∂µ2
F

φ
(n)
V (Q2, µ2

F) = −φ
(n)
V (Q2, µ2

F) ⊗ V (n)(µ2
F) .

It is now easy to prove that the convolution

φ
(n)
V (Q2, µ2

F) ⊗ φ
(n)
V (µ2

F, µ2
0)

indeed does not depend on µ2
F.

5 Concluding remarks

We have sketched the higher-order PQCD calculational
procedure for the hard exclusive quantities on the example
of the pion transition form factor Fγπ.

Furthermore, we have argued that the Fγπ prediction
(1) is independent of the factorization scale µ2

F at every
order in αS, when both the hard-scattering part TH and
the distribution amplitude Φ are consistently treated re-
garding the µ2

F dependence, i.e., in both quantities the
lnµ2

F logarithms are resummed or in both quantities they
are not resummed. The µ2

F dependence of Φ then exactly
cancels the µ2

F dependence of TH, and the choice of the
factorization scale is therefore non-essential, and the pre-
dictions obtained by using any choice of µ2

F are equal to
the results obtained using for practical purposes the sim-
plest intermediate choice µ2

F = Q2, where Q2 represents
the characteristic scale of the process.

The true expansion parameter left is αS(µ2
R), with µ2

R
representing the renormalization scale of the complete per-
turbatively calculable part of the pion transition form fac-
tor (23), i.e., of

TH(s, Q2, µ2
0) = TH(y, Q2, Q2) ⊗ φV (y, s, Q2, µ2

0) . (26)

Therefore, although Fγπ(Q2) depends exclusively on the
characteristic scale of the process Q2, we are left with
the residual dependence on the µ2

R scale, when calculat-
ing to finite order. The intermediate scale at which the
short- and long-distance dynamics separate, the factoriza-
tion scale, disappears from the final prediction at every
order in αS and therefore does not introduce any theoret-
ical uncertainty into the PQCD calculation for exclusive
processes.

The above discussed calculational prescription for the
factorization scale independent calculation is also upheld
for other PQCD exclusive one-scale processes. However,
in the case of exclusive processes which involve more than
one typical scale the treatment of the factorization scale
dependence is more involved. The subtlety in the preced-
ing approach lies in the fact that we have traded one de-
pendence on µF for another one. Namely, the choice we
have made there is that we resum ln terms up to the rel-
evant scale of the process Q2. Although this might seem
reasonable for the one external scale processes, such as the
one which define Fγπ (γγ∗ → π) or the pion electromag-
netic form factor, in processes with two scales, for example
in the one in which the general pion transition form factor
Fγ∗π (γ∗γ∗ → π) appears, one immediately encounters the
ambiguity of how to choose the relevant scale up to which
the logs will be resummed. The existence of such ambi-
guities seems to be an unavoidable artefact of the PQCD
calculation.
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